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Riesz transforms on Rd

On Rd, Riesz transforms Rj , j = 1, · · · , d, are formally defined by

Rj = ∂j(−∆)−1/2.

The classical Calderón-Zygmund theory gives

‖Rjf‖p ≤ Cp‖f‖p.

The sharp inequality can be obtained by either analytic or probabilistic
approach.

Theorem (Bañuelos-Wang 1995, Iwaniec-Martin 1996)

‖Rjf‖p ≤ cot

(
π

2p∗

)
‖f‖p, ∀p > 1

where p∗ = max{p, p
p−1}.
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Gundy-Varopoulos representation on Rd

In 1979, Gundy and Varopoulos proved the now classical representation of
Riesz transforms using “background radiation” process:

Rjf = −2 lim
y0→∞

Ey0
(∫ τ

0
Aj(∇, ∂y)TQf(βs, Bs)(dβs, dBs) | βτ = x

)
,

where

Aj = (aik) is a (d+ 1)× (d+ 1) matrix with a(d+1)j = 1 and
otherwise 0;

βt: Brownian motion on Rd with initial distribution dx;

Bt: Brownian motion on R with generator d2

dy2
starting from y0 > 0;

τ = inf{t > 0 : Bt = 0}: the stopping time;

Qf(x, y) = e−y
√
−∆f(x): the harmonic extension of f ∈ C∞0 (Rd).
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Sharp inequalities for martingales

Bañuelos and Wang proved the following sharp inequality extending the
classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X. Fix 1 < p <∞, then

‖Y ‖p ≤ (p∗ − 1)‖X‖p.

Furthermore, suppose the martingales X and Y are orthogonal. Then

‖Y ‖p ≤ cot

(
π

2p∗

)
‖X‖p.

This, together with Gundy-Varopoulos representation, yields sharp
estimates for the Riesz transform.
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Scalar operators constructed from martingale transforms

M: smooth manifold with smooth measure µ.

X1, · · · , Xd: locally Lipschitz vector fields on M.

V : M→ R is a non-positive smooth potential. Consider the Schrödinger
operator

L = −
d∑
i=1

X∗iXi + V.

We can write

L =

d∑
i=1

X2
i +X0 + V,

for some locally Lipchitz vector field X0.
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Diffusion process

Let (Yt)t≥0 be the diffusion process on M with generator
d∑
i=1

X2
i +X0

starting from the distribution µ.

Via Stratonovitch stochastic differential equation,

dYt = X0(t)dt+

d∑
i=1

Xi(Yt) ◦ dβit,

where βt is the Brownian motion on Rd.

For f ∈ C∞0 (M), denote

QV f(x, y) = Pyf(x) = e−y
√
−Lf(x).

Then Mf
t = e

∫ t∧τ
0 V (Ys)dsQV f(Yt∧τ , Bt∧τ ) is a martingale.
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Projection operators

Consider the operators

Ti =

∫ +∞

0
yPy

(√
−LXi −X∗i

√
−L
)
Pydy, ∀1 ≤ i ≤ d.

By Itô isometry and Itô’s formula,

Theorem (Bañuelos-Baudoin-C. 2018)

For f ∈ S(M) and 1 ≤ i ≤ d,

Tif(x) = −1

2
lim
y0→∞

Ey0
(
e
∫ τ
0 V (Yv)dv

∫ τ

0
e−

∫ s
0 V (Yv)dvAi(∇, ∂y)TQf(Ys, Bs)(dβs, dBs) | Yτ = x

)
,

where ∇ = (X1, · · · , Xd), and Ai is a (d+ 1)× (d+ 1) matrix with
ai(d+1) = −1, a(d+1)i = 1 and otherwise 0.
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Sharp estimate of Bañuelos and Osȩkowski

Theorem (Bañuelos-Osȩkowski 2015)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X. Consider the process

Zt = e
∫ t
0 Vsds

∫ t

0
e−

∫ s
0 VvdvdYs,

where (Vt)t≥0 is a non-positive adapted and continuous process.

‖Z‖p ≤ (p∗ − 1)‖X‖p.



Main result

Theorem (Bañuelos-Baudoin-C. 2018)

Fix 1 < p <∞. Then for every f ∈ S(M),

‖Tif‖p ≤
(

3

2

)
(p∗ − 1)‖f‖p.

If the potential V ≡ 0, then

‖Tif‖p ≤
1

2
cot

(
π

2p∗

)
‖f‖p.

I Applications: Lie group of compact type, Heisenberg groups, SU(2),
etc.

I Generalizations: TA; Riesz transforms on vector bundles (forms,
spinors).
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Example: Lie group of compact type

G: Lie group of compact type with a bi-invariant Riemannian structure.

X1, · · · , Xd: an orthonormal basis of g.

L =
d∑
i=1

X2
i : the Laplace-Beltrami operator.

We observe

Ti =

∫ +∞

0
yPy

(√
−LXi −X∗i

√
−L
)
Pydy =

1

2
Xi(
√
−L)−1.

Proposition

‖Xi(
√
−L)−1‖Lp→Lp ≤ cot

(
π

2p∗

)
.

This inequality was first proved by [Accozzi 1998].
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Example: Heisenberg groups

Hn = {(x, y, z) : x ∈ Rn, y ∈ Rn, z ∈ R}

endowed with the group law

(x, y, z)·(x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

1

2

(〈
x, y′

〉
Rn −

〈
y, x′

〉
Rn
))

.

Let
Xj = ∂xj −

yj
2
∂z, Yj = ∂yj +

xj
2
∂z, Z = ∂z,

We observe
[Xj , Yk] = δjkZ.

The complex gradient
Wj = Xj + iYj .
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The sublaplacian

L =

n∑
j=1

(
X2
j + Y 2

j

)
.

By spectral decomposition of the sublaplacian,

[Wj ,
√
−L]f = 2i TjZf, ∀f ∈ S(Hn)

where

Tj =

∫ +∞

0
yPy(Wj

√
−L+

√
−LWj)Pydy.

Proposition

Let 1 ≤ j ≤ n and f ∈ S(Hn). Then we have

‖ [Wj ,
√
−L]f ‖p ≤

√
2(p∗ − 1)‖Zf‖p.
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Thank you very much!


