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Rj = 0;(—A)"'2,

The classical Calderén-Zygmund theory gives
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The sharp inequality can be obtained by either analytic or probabilistic
approach.

Theorem (Bafiuelos-Wang 1995, lwaniec-Martin 1996)

IR; fll, < cot ( ) 1fls Vo> 1

where p* = max{p, p%l}.
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Gundy-Varopoulos representation on R¢

In 1979, Gundy and Varopoulos proved the now classical representation of
Riesz transforms using “background radiation” process:

Yo—00

R;f =2 lm By, ( | A0 Qs (5 B d3.) | .= x)

where

o Aj = (aj)isa (d+1) x (d+ 1) matrix with a(411); = 1 and
otherwise 0;

@ [(3;: Brownian motion on R4 with initial distribution dz:
@ B;: Brownian motion on R with generator % starting from yo > 0;
o 7 =inf{t > 0: By = 0}: the stopping time;

o Qf(z,y) = e ¥V~2f(x): the harmonic extension of f € C§°(RY).
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Sharp inequalities for martingales

Banuelos and Wang proved the following sharp inequality extending the
classical results of Burkholder (1966).

Theorem (Bafiuelos-Wang 1995)

Let X andY be two martingales with continuous paths such that Y is
differentially subordinate to X. Fix 1 < p < oo, then

Yy < (" = DIXlp.

Furthermore, suppose the martingales X and Y are orthogonal. Then

T
¥l < cot (5 )1

This, together with Gundy-Varopoulos representation, yields sharp
estimates for the Riesz transform.
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Scalar operators constructed from martingale transforms

M: smooth manifold with smooth measure p.
X1,-++, Xy locally Lipschitz vector fields on M.

V : M — R is a non-positive smooth potential. Consider the Schrodinger
operator

d
L=-) X;Xi+V.
=1

We can write
d

L=) X7+ Xo+V,
i=1
for some locally Lipchitz vector field Xj.
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Diffusion process

d
Let (Y%):>0 be the diffusion process on M with generator ) Xi2 + Xo
i=1
starting from the distribution .

Via Stratonovitch stochastic differential equation,
d .
dY; = Xo(t)dt + ) Xi(Y;) 0 3},
i=1

where ; is the Brownian motion on R?.

For f € C§°(M), denote

QY f(z,y) = Pyf(z) = e VL f(2).

tAT

Then Mtf = eJo V(Y-S)dSQVf(Y;M,BMT) is a martingale.
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Projection operators

Consider the operators

+oo
T — / yP, (x/—LXi - X;‘\/—L> Pydy, V1<i<d.
0

By It isometry and It&’s formula,

Theorem (Bafiuelos-Baudoin-C. 2018)
For f € S(M) and 1 < i <d,

T.f(2) = —> lim

Yo— 00

E,, (f Vi [T e VOO 49,0, QF (Yo, B)(dBundBL) | Y = 2
0

where V = (X1,---,Xy), and A; is a (d+ 1) x (d + 1) matrix with
ai(d+1) = —1, aggy1); = 1 and otherwise 0.




Sharp estimate of Banuelos and Osekowski

Theorem (Bafiuelos-Osekowski 2015)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X . Consider the process

t
L s
Z; = efo Vsds/ e fO Vud'udjfS7
0

where (V;)i>0 is a non-positive adapted and continuous process.

12]lp < (" = DIIX[p-
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Main result

Theorem (Bafiuelos-Baudoin-C. 2018)
Fix 1 <p < oco. Then for every f € S(M),

17351 < (3 ) & = D171

If the potential V = 0, then

1 ™
17381y < 500t 5 ) 17l

» Applications: Lie group of compact type, Heisenberg groups, SU(2),
etc.

» Generalizations: T4; Riesz transforms on vector bundles (forms,
spinors).
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Example: Lie group of compact type

G: Lie group of compact type with a bi-invariant Riemannian structure.
X1, -+, Xg: an orthonormal basis of g.
d
L =3 X?: the Laplace-Beltrami operator.
i=1
We observe

+oo 1
T, = / yP, <\/—LXZ- - X;k\/—L) Pydy = 5X:(V=1) ™"
0

Proposition

[T\ — ™
||XZ( —L) IHLPHLP S COt(Qp*) .

This inequality was first proved by [Accozzi 1998].
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Example: Heisenberg groups

H" = {(2,y,2) : ¢ € R*,y € R*, 2 € R}

endowed with the group law

(x,y,2)- (2", 9/, 2') = (ﬂf Lyt e+ (3 YV )an = (¥ x'>Rn)) :

2

Let
| .
X; =0y, — %ﬂaz, Yj =0y, + 0. Z=0,

We observe
[Xj’Yk] = ij‘

The complex gradient
W; = X; +14Y}.
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The sublaplacian
n

L=) (X7+Y}).
j=1
By spectral decomposition of the sublaplacian,

(Wj,V=LIf =2iT;Zf, VfeSH")

where

400
T = / yPy(W;V =L+ vV —LW;)P,dy.
0

Proposition

Let1<j<mnandfeSH"). Then we have

| W, V=LIf llp < V2(p* = DI Zf]l,.




Thank you very much!



