Gundy-Varopoulos martingale transforms and their projection operators

Li CHEN
joint with R. Bañuelos (Purdue) and F. Baudoin (UCONN)

University of Connecticut

Oaxaca, September 10, 2018

Riesz transforms on \mathbb{R}^{d}

On \mathbb{R}^{d}, Riesz transforms $R_{j}, j=1, \cdots, d$, are formally defined by

$$
R_{j}=\partial_{j}(-\Delta)^{-1 / 2}
$$

The classical Calderón-Zygmund theory gives

$$
\left\|R_{j} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

where $p^{*}=\max \left\{p, \frac{p}{p-1}\right\}$.

Riesz transforms on \mathbb{R}^{d}

On \mathbb{R}^{d}, Riesz transforms $R_{j}, j=1, \cdots, d$, are formally defined by

$$
R_{j}=\partial_{j}(-\Delta)^{-1 / 2}
$$

The classical Calderón-Zygmund theory gives

$$
\left\|R_{j} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Bañuelos-Wang 1995, Iwaniec-Martin 1996)

Riesz transforms on \mathbb{R}^{d}

On \mathbb{R}^{d}, Riesz transforms $R_{j}, j=1, \cdots, d$, are formally defined by

$$
R_{j}=\partial_{j}(-\Delta)^{-1 / 2}
$$

The classical Calderón-Zygmund theory gives

$$
\left\|R_{j} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Riesz transforms on \mathbb{R}^{d}

On \mathbb{R}^{d}, Riesz transforms $R_{j}, j=1, \cdots, d$, are formally defined by

$$
R_{j}=\partial_{j}(-\Delta)^{-1 / 2}
$$

The classical Calderón-Zygmund theory gives

$$
\left\|R_{j} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Bañuelos-Wang 1995, Iwaniec-Martin 1996)

$$
\left\|R_{j} f\right\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p}, \quad \forall p>1
$$

where $p^{*}=\max \left\{p, \frac{p}{p-1}\right\}$.

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where otherwise 0 ;

- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$; - B_{t} : Brownian motion on \mathbb{R} with generator $\frac{d^{2}}{d y^{2}}$ starting from $y_{0}>0$;
\square - $Q f(x, y)=e^{-y \sqrt{-\Delta}} f(x)$: the harmonic extension of $f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where

- $A_{j}=\left(a_{i k}\right)$ is a $(d+1) \times(d+1)$ matrix with $a_{(d+1) j}=1$ and otherwise 0 ;
- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$;

\square
\square

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where

- $A_{j}=\left(a_{i k}\right)$ is a $(d+1) \times(d+1)$ matrix with $a_{(d+1) j}=1$ and otherwise 0 ;
- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$;

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where

- $A_{j}=\left(a_{i k}\right)$ is a $(d+1) \times(d+1)$ matrix with $a_{(d+1) j}=1$ and otherwise 0 ;
- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$;
- B_{t} : Brownian motion on \mathbb{R} with generator $\frac{d^{2}}{d y^{2}}$ starting from $y_{0}>0$;
- $\tau=\inf \left\{t>0: B_{t}=0\right\}:$ the stopping time;

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where

- $A_{j}=\left(a_{i k}\right)$ is a $(d+1) \times(d+1)$ matrix with $a_{(d+1) j}=1$ and otherwise 0 ;
- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$;
- B_{t} : Brownian motion on \mathbb{R} with generator $\frac{d^{2}}{d y^{2}}$ starting from $y_{0}>0$;
- $\tau=\inf \left\{t>0: B_{t}=0\right\}$: the stopping time;

Gundy-Varopoulos representation on \mathbb{R}^{d}

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$
R_{j} f=-2 \lim _{y_{0} \rightarrow \infty} \mathbb{E}_{y_{0}}\left(\int_{0}^{\tau} A_{j}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(\beta_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid \beta_{\tau}=x\right)
$$

where

- $A_{j}=\left(a_{i k}\right)$ is a $(d+1) \times(d+1)$ matrix with $a_{(d+1) j}=1$ and otherwise 0 ;
- β_{t} : Brownian motion on \mathbb{R}^{d} with initial distribution $d x$;
- B_{t} : Brownian motion on \mathbb{R} with generator $\frac{d^{2}}{d y^{2}}$ starting from $y_{0}>0$;
- $\tau=\inf \left\{t>0: B_{t}=0\right\}$: the stopping time;
- $Q f(x, y)=e^{-y \sqrt{-\Delta}} f(x)$: the harmonic extension of $f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

Sharp inequalities for martingales

Bañuelos and Wang proved the following sharp inequality extending the classical results of Burkholder (1966).

This, together with Gundy-Varopoulos representation, yields sharp estimates for the Riesz transform

Sharp inequalities for martingales

Bañuelos and Wang proved the following sharp inequality extending the classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)
Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Fix $1<p<\infty$, then

$$
\|Y\|_{p} \leq\left(p^{*}-1\right)\|X\|_{p}
$$

Furthermore, suppose the martingales X and Y are orthogonal. Then

$$
\|Y\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|X\|_{p}
$$

[^0]
Sharp inequalities for martingales

Bañuelos and Wang proved the following sharp inequality extending the classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)
Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Fix $1<p<\infty$, then

$$
\|Y\|_{p} \leq\left(p^{*}-1\right)\|X\|_{p}
$$

Furthermore, suppose the martingales X and Y are orthogonal. Then

$$
\|Y\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|X\|_{p}
$$

This, together with Gundy-Varopoulos representation, yields sharp estimates for the Riesz transform.

Scalar operators constructed from martingale transforms

\mathbb{M} : smooth manifold with smooth measure μ.
X_{1}, \cdots, X_{d} : locally Lipschitz vector fields on \mathbb{M}.
$V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

We can write

for some locally Lipchitz vector field X_{0}.

Scalar operators constructed from martingale transforms

\mathbb{M} : smooth manifold with smooth measure μ. X_{1}, \cdots, X_{d} : locally Lipschitz vector fields on \mathbb{M}.
$V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

We can write

for some locally Lipchitz vector field X_{0}.

Scalar operators constructed from martingale transforms

\mathbb{M} : smooth manifold with smooth measure μ.
X_{1}, \cdots, X_{d} : locally Lipschitz vector fields on \mathbb{M}.
$V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$
L=-\sum_{i=1}^{d} X_{i}^{*} X_{i}+V
$$

We can write
for some locally Lipchitz vector field X_{0}.

Scalar operators constructed from martingale transforms

\mathbb{M} : smooth manifold with smooth measure μ.
X_{1}, \cdots, X_{d} : locally Lipschitz vector fields on \mathbb{M}.
$V: \mathbb{M} \rightarrow \mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$
L=-\sum_{i=1}^{d} X_{i}^{*} X_{i}+V
$$

We can write

$$
L=\sum_{i=1}^{d} X_{i}^{2}+X_{0}+V
$$

for some locally Lipchitz vector field X_{0}.

Diffusion process

Let $\left(Y_{t}\right)_{t \geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^{d} X_{i}^{2}+X_{0}$ starting from the distribution μ.

Via Stratonovitch stochastic differential equation,

where β_{t} is the Brownian motion on \mathbb{R}^{d}.
For $f \in C_{0}^{\infty}(\mathbb{M})$, denote

Then $M_{t}^{f}=e^{\int_{0}^{t \wedge \tau} V\left(Y_{s}\right) d s} Q^{V} f\left(Y_{t \wedge \tau}, B_{t \wedge \tau}\right)$ is a martingale.

Diffusion process

Let $\left(Y_{t}\right)_{t \geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^{d} X_{i}^{2}+X_{0}$ starting from the distribution μ.

Via Stratonovitch stochastic differential equation,

$$
d Y_{t}=X_{0}(t) d t+\sum_{i=1}^{d} X_{i}\left(Y_{t}\right) \circ d \beta_{t}^{i}
$$

where β_{t} is the Brownian motion on \mathbb{R}^{d}.
For $f \in C_{0}^{\infty}(\mathbb{M})$, denote

Diffusion process

Let $\left(Y_{t}\right)_{t \geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^{d} X_{i}^{2}+X_{0}$ starting from the distribution μ.

Via Stratonovitch stochastic differential equation,

$$
d Y_{t}=X_{0}(t) d t+\sum_{i=1}^{d} X_{i}\left(Y_{t}\right) \circ d \beta_{t}^{i}
$$

where β_{t} is the Brownian motion on \mathbb{R}^{d}.
For $f \in C_{0}^{\infty}(\mathbb{M})$, denote

$$
Q^{V} f(x, y)=P_{y} f(x)=e^{-y \sqrt{-L}} f(x)
$$

Diffusion process

Let $\left(Y_{t}\right)_{t \geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^{d} X_{i}^{2}+X_{0}$ starting from the distribution μ.

Via Stratonovitch stochastic differential equation,

$$
d Y_{t}=X_{0}(t) d t+\sum_{i=1}^{d} X_{i}\left(Y_{t}\right) \circ d \beta_{t}^{i}
$$

where β_{t} is the Brownian motion on \mathbb{R}^{d}.
For $f \in C_{0}^{\infty}(\mathbb{M})$, denote

$$
Q^{V} f(x, y)=P_{y} f(x)=e^{-y \sqrt{-L}} f(x)
$$

Then $M_{t}^{f}=e^{\int_{0}^{t \wedge \tau} V\left(Y_{s}\right) d s} Q^{V} f\left(Y_{t \wedge \tau}, B_{t \wedge \tau}\right)$ is a martingale.

Projection operators

Consider the operators

$$
T_{i}=\int_{0}^{+\infty} y P_{y}\left(\sqrt{-L} X_{i}-X_{i}^{*} \sqrt{-L}\right) P_{y} d y, \quad \forall 1 \leq i \leq d
$$

By Itô isometry and Itô's formula,

$a_{i(d+1)}=-1, a_{(d+1) i}=1$ and otherwise 0.

Projection operators

Consider the operators

$$
T_{i}=\int_{0}^{+\infty} y P_{y}\left(\sqrt{-L} X_{i}-X_{i}^{*} \sqrt{-L}\right) P_{y} d y, \quad \forall 1 \leq i \leq d
$$

By Itô isometry and Itô's formula,

Projection operators

Consider the operators

$$
T_{i}=\int_{0}^{+\infty} y P_{y}\left(\sqrt{-L} X_{i}-X_{i}^{*} \sqrt{-L}\right) P_{y} d y, \quad \forall 1 \leq i \leq d
$$

By Itô isometry and Itô's formula,
Theorem (Bañuelos-Baudoin-C. 2018)
For $f \in \mathcal{S}(\mathbb{M})$ and $1 \leq i \leq d$,

$$
T_{i} f(x)=-\frac{1}{2} \lim _{y_{0} \rightarrow \infty}
$$

$\mathbb{E}_{y_{0}}\left(e^{\int_{0}^{\tau} V\left(Y_{v}\right) d v} \int_{0}^{\tau} e^{-\int_{0}^{s} V\left(Y_{v}\right) d v} A_{i}\left(\nabla, \partial_{y}\right)^{\mathrm{T}} Q f\left(Y_{s}, B_{s}\right)\left(d \beta_{s}, d B_{s}\right) \mid Y_{\tau}=x\right)$

$$
\text { where } \nabla=\left(X_{1}, \cdots, X_{d}\right) \text {, and } A_{i} \text { is a }(d+1) \times(d+1) \text { matrix with }
$$

$a_{i(d+1)}=-1, a_{(d+1) i}=1$ and otherwise 0.

Sharp estimate of Bañuelos and Osękowski

Theorem (Bañuelos-Osẹkowski 2015)

Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Consider the process

$$
Z_{t}=e^{\int_{0}^{t} V_{s} d s} \int_{0}^{t} e^{-\int_{0}^{s} V_{v} d v} d Y_{s}
$$

where $\left(V_{t}\right)_{t \geq 0}$ is a non-positive adapted and continuous process.

$$
\|Z\|_{p} \leq\left(p^{*}-1\right)\|X\|_{p}
$$

Main result

Theorem (Bañuelos-Baudoin-C. 2018)
Fix $1<p<\infty$. Then for every $f \in \mathcal{S}(\mathbb{M})$,

$$
\left\|T_{i} f\right\|_{p} \leq\left(\frac{3}{2}\right)\left(p^{*}-1\right)\|f\|_{p}
$$

If the potential $V \equiv 0$, then

$$
\left\|T_{i} f\right\|_{p} \leq \frac{1}{2} \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p}
$$

- Applications: Lie group of compact type, Heisenberg groups, $\mathbb{S U}(2)$,
- Generalizations: T_{A}; Riesz transforms on vector bundles (forms, spinors)

Main result

Theorem (Bañuelos-Baudoin-C. 2018)
Fix $1<p<\infty$. Then for every $f \in \mathcal{S}(\mathbb{M})$,

$$
\left\|T_{i} f\right\|_{p} \leq\left(\frac{3}{2}\right)\left(p^{*}-1\right)\|f\|_{p}
$$

If the potential $V \equiv 0$, then

$$
\left\|T_{i} f\right\|_{p} \leq \frac{1}{2} \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p}
$$

- Applications: Lie group of compact type, Heisenberg groups, $\mathbb{S U}(2)$, etc.
- Generalizations: T_{A}; Riesz transforms on vector bundles (forms, spinors).

Example: Lie group of compact type

G : Lie group of compact type with a bi-invariant Riemannian structure. X_{d} : an orthonormal basis of \mathfrak{g}.
$L=\sum_{i=1}^{d} X_{i}^{2}$ the Laplace-Beltrami operator.

We observe

This inequality was first proved by [Accozzi 1998]

Example: Lie group of compact type

G : Lie group of compact type with a bi-invariant Riemannian structure. $X_{1}, \cdots, X_{d}:$ an orthonormal basis of \mathfrak{g}.
$L=\sum_{i=1}^{d} X_{i}^{2}:$ the Laplace-Beltrami operator.
We observe

This inequality was first proved by [Accozzi 1998].

Example: Lie group of compact type

G : Lie group of compact type with a bi-invariant Riemannian structure. $X_{1}, \cdots, X_{d}:$ an orthonormal basis of \mathfrak{g}.
$L=\sum_{i=1}^{d} X_{i}^{2}:$ the Laplace-Beltrami operator.
We observe

Example: Lie group of compact type

G : Lie group of compact type with a bi-invariant Riemannian structure.
$X_{1}, \cdots, X_{d}:$ an orthonormal basis of \mathfrak{g}.
$L=\sum_{i=1}^{d} X_{i}^{2}:$ the Laplace-Beltrami operator.
We observe

$$
T_{i}=\int_{0}^{+\infty} y P_{y}\left(\sqrt{-L} X_{i}-X_{i}^{*} \sqrt{-L}\right) P_{y} d y=\frac{1}{2} X_{i}(\sqrt{-L})^{-1}
$$

Proposition

$$
\left\|X_{i}(\sqrt{-L})^{-1}\right\|_{L^{p} \rightarrow L^{p}} \leq \cot \left(\frac{\pi}{2 p^{*}}\right) .
$$

This inequality was first proved by [Accozzi 1998].

Example: Heisenberg groups

$$
\mathbb{H}^{n}=\left\{(x, y, z): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\}
$$

endowed with the group law
$(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle_{\mathbb{R}^{n}}-\left\langle y, x^{\prime}\right\rangle_{\mathbb{R}^{n}}\right)\right)$.

We observe

$$
\left[X_{j}, Y_{k}\right]=\delta_{j k} Z
$$

Example: Heisenberg groups

$$
\mathbb{H}^{n}=\left\{(x, y, z): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\}
$$

endowed with the group law
$(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle_{\mathbb{R}^{n}}-\left\langle y, x^{\prime}\right\rangle_{\mathbb{R}^{n}}\right)\right)$.
Let

$$
X_{j}=\partial_{x_{j}}-\frac{y_{j}}{2} \partial_{z}, \quad Y_{j}=\partial_{y_{j}}+\frac{x_{j}}{2} \partial_{z}, \quad Z=\partial_{z}
$$

Example: Heisenberg groups

$$
\mathbb{H}^{n}=\left\{(x, y, z): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\}
$$

endowed with the group law
$(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle_{\mathbb{R}^{n}}-\left\langle y, x^{\prime}\right\rangle_{\mathbb{R}^{n}}\right)\right)$.
Let

$$
X_{j}=\partial_{x_{j}}-\frac{y_{j}}{2} \partial_{z}, \quad Y_{j}=\partial_{y_{j}}+\frac{x_{j}}{2} \partial_{z}, \quad Z=\partial_{z}
$$

We observe

$$
\left[X_{j}, Y_{k}\right]=\delta_{j k} Z
$$

Example: Heisenberg groups

$$
\mathbb{H}^{n}=\left\{(x, y, z): x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}\right\}
$$

endowed with the group law
$(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(\left\langle x, y^{\prime}\right\rangle_{\mathbb{R}^{n}}-\left\langle y, x^{\prime}\right\rangle_{\mathbb{R}^{n}}\right)\right)$.
Let

$$
X_{j}=\partial_{x_{j}}-\frac{y_{j}}{2} \partial_{z}, \quad Y_{j}=\partial_{y_{j}}+\frac{x_{j}}{2} \partial_{z}, \quad Z=\partial_{z}
$$

We observe

$$
\left[X_{j}, Y_{k}\right]=\delta_{j k} Z
$$

The complex gradient

$$
W_{j}=X_{j}+i Y_{j}
$$

The sublaplacian

$$
L=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

By spectral decomposition of the sublaplacian,

$$
\left[W_{j}, \sqrt{-L}\right] f=2 i \mathcal{T}_{j} Z f, \quad \forall f \in \mathcal{S}\left(\mathbb{H}^{n}\right)
$$

where

$$
\mathcal{T}_{j}=\int_{0}^{+\infty} y P_{y}\left(W_{j} \sqrt{-L}+\sqrt{-L} W_{j}\right) P_{y} d y
$$

Proposition

Let $1 \leq j \leq n$ and $f \in S\left(\mathbb{H}^{n}\right)$. Then we have

$$
\left\|\left[W_{j}, \sqrt{-L}\right] f\right\|_{p} \leq \sqrt{2}\left(p^{*}-1\right)\|Z f\|_{p}
$$

The sublaplacian

$$
L=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

By spectral decomposition of the sublaplacian,

$$
\left[W_{j}, \sqrt{-L}\right] f=2 i \mathcal{T}_{j} Z f, \quad \forall f \in \mathcal{S}\left(\mathbb{H}^{n}\right)
$$

where

$$
\mathcal{T}_{j}=\int_{0}^{+\infty} y P_{y}\left(W_{j} \sqrt{-L}+\sqrt{-L} W_{j}\right) P_{y} d y
$$

The sublaplacian

$$
L=\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right) .
$$

By spectral decomposition of the sublaplacian,

$$
\left[W_{j}, \sqrt{-L}\right] f=2 i \mathcal{T}_{j} Z f, \quad \forall f \in \mathcal{S}\left(\mathbb{H}^{n}\right)
$$

where

$$
\mathcal{T}_{j}=\int_{0}^{+\infty} y P_{y}\left(W_{j} \sqrt{-L}+\sqrt{-L} W_{j}\right) P_{y} d y
$$

Proposition

Let $1 \leq j \leq n$ and $f \in \mathcal{S}\left(\mathbb{H}^{n}\right)$. Then we have

$$
\left\|\left[W_{j}, \sqrt{-L}\right] f\right\|_{p} \leq \sqrt{2}\left(p^{*}-1\right)\|Z f\|_{p}
$$

Thank you very much!

[^0]: This, together with Gundy-Varopoulos representation, yields sharp estimates for the Riesz transform.

